# N.M.R. Spectra and Conformations of 9,10-Dihydroanthracenes 

Naseer-ud-din Ahmad, Christopher Cloke, Ian K. Hatton, Norman J. Lewis, and Jake MacMillan* School of Chemistry, The University, Bristol BS8 1 TS


#### Abstract

The preparation of a series of substituted 9,10 -dihydroanthracenes is described and their proton n.m.r. spectra are discussed. It is suggested that the trans-isomers of 9,10 -dialkyl-9,10-dihydroanthracenes, substituted in the 9,10- or peri-positions adopt a planar ring conformation with the 9,10 -dialkyl substituents placed over the ring. It is further suggested that the highfield signal of the $\beta$-protons of the 9,10 -dialkyl substituents is due partly to the magnetic anisotropy of the aromatic rings, and partly to the magnetic anisotropy of the carbon-carbon bonds from the alkyl groups to the 9 -and 10 -positions in the central ring.


The extensive, and often contradictory, literature on the conformational analysis of cyclohexa-1,4-dienes has been reviewed by Rabideau. ${ }^{1}$ In the case of the 9,10 -dihydroanthracenes, n.m.r. evidence indicates that cis-9,10-dialkyl derivatives ( 1 ) exist in solution as boat conformers of the central ring with $\psi$-axial 9,10 -substituents; large substituents, however, appear to cause a flattening of the central ring. The conformations of the trans-isomers (2) have been less well defined but the symmetry of their ${ }^{1} \mathrm{H}$ n.m.r. spectra indicates that they possess a plane of symmetry at least on the n.m.r. time scale.
The n.m.r. spectra of 9,10 -dialkyl-9,10-dihydro-anthracene9,10 -diols are of special interest. In the trans-isomers (4) the alkyl protons, $\beta$ - to the ring system, are highly shielded. ${ }^{2.3}$ The trans-isomers (4) are also distinguished from the cis-isomers (3) by the lower chemical shift of the alkyl protons $\alpha$-to the ring. In trying to explain the highfield signal of, for example, the methyl protons at $\delta 0.22$ in the trans-isomer (4b), Cohen et al. ${ }^{3}$ erroneously concluded that this isomer was the cis-9,10-diaxial conformer (5), Cocgnacq et al. ${ }^{2}$ have suggested that the transisomers (4) exist as the rapidly equilibrating boat conformers (6) in which the average position of the $\alpha$ - and $\beta$-protons of the alkyl substituents are respectively in the deshielding and shielding zones of the aromatic rings. This latter explanation is unsatisfactory on the basis of Johnson-Bovey calculations ${ }^{4}$ which, for compound (4b), give a maximum shielding of 0.72 p.p.m. for the methyl protons of the axial substituent and a minimum deshielding of 0.01 p.p.m. for the methyl protons of the equatorial substituent. Moreover the trans-9,10-dihydroanthracenes (2), without the 9,10-dihydroxy substituents, would also be expected to exist in the same equilibrating conformers, but, in the absence of peri-substituents (see later) the $\beta$-protons of the 9,10 -dialkyl substituents in these compounds do not show the exceptionally highfield chemical shifts, shown by the $\beta$ protons of the 9,10 -dialkyl substituents in the trans-isomers (4).

This paper describes the preparation of a series of $9,10-$ dialkyl-9,10-dihydroanthracenes and their 9,10 -diols and discusses their ${ }^{1} \mathrm{H}$ n.m.r. spectra in terms of their conformations. The following paper presents $X$-ray diffraction structures for three of these 9,10 -dihydroanthracenes.

9,10-Dialkyl-9,10-dihydroanthracene-9,10-diols.-The cis-and trans-isomers, shown in Table 1, were prepared essentially as described by Chodkiewicz et al. ${ }^{5}$ The cis-isomers (3b,c,d,g,h) were obtained with unambiguous stereochemistry, by catalytic reduction of the epidioxides ( $\mathbf{7 b}, \mathbf{c}, \mathrm{d}, \mathrm{g}, \mathrm{h}$ ) using $2 \%$ palladium on barium carbonate; ${ }^{6}$ the alternative method of reduction using lithium aluminium hydride ${ }^{7.8}$ was not used because of the risk of isomerisation of the resulting diols (3) during acidic work-up (see later). The epidioxides were obtained by photo-oxygenation of the anthracenes ( $\mathbf{8} \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathrm{g}, \mathrm{h}$ ) which were obtained by treating

(1)

(3)

(5)

(7)
a; $R^{1}=M e, R^{2}=H$
b; $R^{1}=E t, R^{2}=H$
c: $R^{1}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$
d: $R^{1}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}$

(2)

(4)

(6)

(8)
e; $R^{\prime}=P r^{i}, R^{2}=H$
f; $R^{1}=B u^{t} \cdot R^{2}=H$
g; $R^{1}=E t, R^{2}=O M e$
$h: R^{1}=M e, R^{2}=O M e$
the diols, prepared from anthraquinone and the appropriate alkylmagnesium bromides, with phenylhydrazine and acetic acid. ${ }^{9}$ Contrary to a report by Clark, ${ }^{9}$ this method did not work for the branched 9,10 -di-isopropyl $9,10-\mathrm{diol}$ (4e). The product claimed by Clark ${ }^{9}$ to be 9,10 -di-isopropylanthracene (8e) was probably 9 -isopropenyl-10-isopropylanthracene (9) which was prepared, in the present work, by heating the trans-diol (4e) with 10 m -hydrochloric acid; the analogous alkenylanthracenes (10) and (11) were likewise obtained from the trans-diols (4c) and (4d). Attempts to prepare 9,10-di-isopropylanthracene (8e) by

Table 1. 9,10-Dialkyl-9,10-dihydroanthracene-9,10-diols: chemical shifts $(\delta)^{a}$ with multiplicity and $J$ values $(\mathrm{Hz})$ in parentheses

| Compd. | Alkyl substituent protons |  |
| :---: | :---: | :---: |
|  | $\alpha$ | $\beta$ |
| (3b) | 1.75 (q, 7.5) | 0.82 (t, 7.5) |
| (4b) | 2.15 (q, 7) | 0.22 (q, 7.0) |
| $(3 \mathrm{c})^{\text {b }}$ | 1.67 ( $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4.5,12.2$ ) | 1.35 ( $\left.\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{X}_{3}, 4.5,12.2,7.6\right)$ |
| (4c) ${ }^{\text {c }}$ | 2.10 ( $\left.\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4.5,12.2\right)$ | 0.60 ( $\left.\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{X}_{3}, 4.5,12.2,7.6\right)$ |
| (3d) | 2.55 (m) | 2.06 (m) |
| (4d) | 2.50 (m) | 1.80 (m) |
| (3e) | 1.74 (m) | 0.94 (d, 7) |
| (4e) | 2.08 (m) | 0.50 (d, 7) |
| (3g) | 1.77 (dq, 14, 7.5) | 0.88 (t, 7.5) |
|  | 2.19 (dq, 14, 7.5) |  |
| (4g) | 1.89 (dq, 13. 7.5) | 0.09 (t, 7.5) |
|  | 2.50 (dq, 13, 7.5) |  |

${ }^{a}$ In $\mathrm{CDCl}_{3}$ solution with $\mathrm{SiMe}_{4}$ as internal standard except for compound ( 4 g ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ signal as lock. ${ }^{b} \mathrm{Me}$ signal at $\delta 0.75(\mathrm{t}, 7.6) .{ }^{\mathrm{c}} \mathrm{Me}$ signal at $\delta 0.50(\mathrm{t}, 7.6)$
hydrogenation of the 9 -isopropenyl-10-isopropylanthracene (9) gave cis-9,10-dihydro-9,10-di-isopropylanthracene (1e). The required 9,10 -di-isopropylanthracene (8e) was eventually prepared by dehydrogenation of trans-9,10-dihydro-9,10-diisopropylanthracene ( $\mathbf{2 e}$ ) with 2,3-dichloro-5,6-dicyanobenzoquinone. Contrary to Nogaideli et al. ${ }^{10}$ trans-9,10-dihydro-9,10-di-isopropylanthracene (2e) was not dehydrogenated with sulphur but was isomerised to the cis-isomer (1e).

The stereochemistry of the diols, obtained in the Grignard reactions, is of interest. From methylmagnesium bromide and anthraquinone, the cis-isomer (3a) was obtained in high yield and the trans-isomer (4a) was not detected (cf. ref. 8). From anthraquinone and ethyl, propyl, and $\beta$-phenylethyl magnesium bromides the trans-isomers ( $\mathbf{4} \mathbf{b}-\mathbf{d}$ ) were obtained in low yields and the cis-isomers ( $\mathbf{3 b}-\mathbf{d}$ ) were not detected. From 1,4dimethoxyanthraquinone and methylmagnesium bromide the cis-diol ( $\mathbf{3 h}$ ) was obtained in high yield as reported previously by Lepage. ${ }^{7}$ Reaction between 1,4-dimethoxyanthraquinone and ethylmagnesium bromide was very slow but, in refluxing anisole, it gave the cis- and trans-9,10-diols ( 3 g ) and ( 4 g ), each in ca. $20 \%$ yield. The stereochemistry of the 9,10 -diols from anthraquinones and Grignard reagents appears therefore to depend upon both peri- and 9,10 -interactions.

In the reaction of anthraquinone and isopropylmagnesium bromide, the main product was the anthrone (12). In attempts to prepare 9,10 -dihydro-9,10-di-s-butylanthracene-9,10-diol, the anthrone (13) and the olefin (18) were isolated and the anthrone (14) and the anthraquinone (15) were tentatively identified as minor products. Similarly the reaction of anthraquinone and $t$-butylmagnesium bromide did not give the 9,10 -di-t-butyl-9,10-diols (3f) or (4f); the products were the anthrone (16), previously obtained by Cameron and Meckel, ${ }^{11}$ and compounds (17) and (19).

As previously noted by Cocgnacq et al., ${ }^{2}$ some of the transisomers (4) were isomerised to the cis-isomers (3) with acetic acid in chloroform. Thus the trans-isomer (4b) gave a mixture of the cis- and trans-isomers (3b) and (4b) in the ratio 15:1 at room temperature. The trans-diol (4d) gave the cis-isomer (3d) quantitatively at reflux. The trans-isomer ( 4 c ) gave the cisisomer ( 3 c ) in $c a .50 \%$ yield at room temperature but, at reflux, gave 9 -propyl-10-propylideneanthracene-9-ol (20). The transdiol (4e) was not isomerised but was partially dehydrated to yield the anthracene (21). The cis-9,10-dimethyl 9,10 -diols (3a) and (3h) and the cis- and trans-9,10-diethyl 9,10-diols (3g) and

(9) $R^{1}=P r^{i}, R^{2}=M e, R^{3}=H$
$R=R^{3}=C H(M e) E t, R^{2}=\mathrm{H}, \mathrm{OH}$
(10) $R^{1}=\mathrm{CH}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}$
(11) $R^{1}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Ph}$

(18) $R^{\prime}=C H(M e) E t, R^{2}=C(M e) E t$
(19) $R^{1}=B u^{t}, R^{2}=H, O H$
(20) $R^{1}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{CHCH}_{2} \mathrm{Me}$
(21) $R^{\prime}=\mathrm{Pr}^{i}, R^{2}=\mathrm{CMe}_{2}$


(24)

(25)

(26)

(27)
$(4 \mathrm{~g})$ were not isomerised. Because of the instability of some of the trans-diols (4) to acidic conditions, the Grignard reactions were worked up by acidifying the reaction mixture at $0^{\circ} \mathrm{C}$ and then immediately adding aqueous sodium carbonate.

9,10-Dialkyl-9,10-dihydroanthracenes.-The n.m.r. data for the isomers, prepared in this study, are listed in Table 2. The n.m.r. data for the cis-t-butyl compound (1f), ${ }^{12}$ for diisoelemicin (22), ${ }^{13}$ and for 9,9,10-triethyldihydroanthracene (23) ${ }^{14}$ are taken from the literature.

Harvey and Davis ${ }^{15}$ have described the preparation of cis-9,10-diethyl-9,10-dihydroanthracene (1b) in $95 \%$ yield by addition-alkylation of anthracene and assigned its stereochemistry, essentially by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy. In our hands,

Table 2. 9,10-Dialkyl-9,10-dihydroanthracenes: chemical shift ( $\delta)^{a}$ with multiplicity and $J$ values $(\mathrm{Hz})$ in parentheses

| Compd. | Proton signals |  |  |
| :---: | :---: | :---: | :---: |
|  | 9,10 | $\alpha$ | $\beta$ |
| (1b) | 3.77 (t, 7) | 1.77 (q, 7) | 1.06 (t, 7) |
| (2b) | 3.99 (t, 5.5) | 2.08 (dq, 5.5, 7.5) | 0.78 (t, 7.5) |
| (1c) ${ }^{\text {b }}$ | 3.79 (t, 7) | 1.58 (m) | 1.58 (m) |
| (2c) ${ }^{\text {c }}$ | 3.95 (t, 6) | 2.00 (m) | 1.26 (m) |
| (1e) | 3.30 (d, 10) | 1.62 (dq, 7, 10) | 1.00 (d, 7) |
| (2e) | 3.75 (d, 5.5) | 2.30 (dq, 5.5, 7.0) | 0.96 (d, 7) |
| $(11)^{12}$ | 3.97 (s) | - | 1.04 (s) |
| (2f) | 3.87 (s) | - | 1.20 (s) |
| (1g) | 4.00 (dd, 5, 9) | $c a .1 .48$ (m), ca. 1.80 (m) | 1.00 (t, 7) |
| (2g) | 4.50 (t, 5) | $c a .1 .68$ (m), ca. 2.08 (m) | 0.10 (t, 7.5) |
| $(22){ }^{13}$ | 4.28 (t, 3.7) | 1.70 (m, 3.7, 7.25, 13.5) | 0.20 (t, 7.25) |
|  |  | 2.10 (m, 3.7, 7.25, 13.5) |  |
| (23) ${ }^{14}$ | 4.00 (t, 6) | 1.90 (m), 1.95 (q, 7), | 0.17 (t, 7), 0.63 (t, 7) |
|  |  | 2.07 (q, 7) | 0.77 (t, 7) |
| (24) | $d$ | $d$ | 0.56 (t, 7) |
| (25) | $e$ | 1.68 (dq, 3, 7.5) | 0.56 (t, 7.5) |
| (26) | 3.39 (t, ca. 3) | 1.88 (dq, 3, 7.5, 11.5) | 0.44 (t, 7.5) |

${ }^{a}$ For $\mathrm{CDCl}_{3}$ solutions with $\mathrm{SiMe}_{4}$ as internal standard except for compound (22) ( $\mathrm{CHCl}_{3}$ as internal lock) and for compound ( 2 g ) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ as solvent and internal lock). ${ }^{b}$ Methyl signal at $\delta 0.90(\mathrm{t}, 7)$. ${ }^{c}$ Methyl signal at $\delta 0.89(\mathrm{t}, 7) .{ }^{d}$ Unidentified in other signals at ca. 1.25$2.04(12 \mathrm{H}, \mathrm{m})$, ca. $2.40-2.70(6 \mathrm{H}, \mathrm{m})$, and $5.79(2 \mathrm{H}, \mathrm{s}) .{ }^{e}$ Unidentified in other signals at $c a .2 .25-2.90(10 \mathrm{H}, \mathrm{m}), 5.79(4 \mathrm{H}, \mathrm{s})$.
treatment of anthracene with ethyl-lithium, followed by ethyl bromide, consistently gave a mixture ( $3: 1$ by n.m.r.) of the cisand trans-isomers (1b) and (2b) from which the cis-isomer, m.p. $59-60^{\circ} \mathrm{C}$ was isolated. Our results are all the more surprising since Rabideau and Burkholder ${ }^{16}$ and Banks et al. ${ }^{17}$ obtained the cis-isomer (1b) in high yield by ethylation of 9 -ethyl-9,10dihydroanthracene. Harvey et al. ${ }^{14}$ have also described the preparation of the trans-isomer (2b), m.p. $44.5^{\circ} \mathrm{C}$, in quantitative yield by reduction of 9,10 -diethylanthracene ( $\mathbf{8 b}$ ) with lithium in liquid ammonia. In our hands, this reduction under a variety of conditions [presence or absence of iron(III) chloride, ethanol, and oxygen] gave a mixture of products from which the transisomer (2b), m.p. $53.5-56^{\circ} \mathrm{C}$, containing up to $7 \%$ of the cisisomer (1b), was isolated. On one occasion over-reduction occurred to give the hydroaromatic compounds (24), (25), (26), and possibly (27), but this reduction could not be repeated.

Reductive alkylation of anthracene with sodium and propyl bromide or phenethyl bromide gave the cis-isomers (1c) or (1d). With isopropyl bromide, both cis- and trans-isomers (1e) and (2e) were formed as previously reported by Zeigler et al. ${ }^{18}$ Contrary to the results of Redford, ${ }^{19}$ but consistent with those of Fu et al..$^{12}$ and Carruthers and Hall, ${ }^{20}$ anthracene, sodium and t-butyl bromide gave the trans-isomer (2f) and no cisisomer (1).
trans-9,10-Dihydro-9,10-dipropylanthracene (2c) and cis- and trans-9,10-diethyl-9,10-dihydro-1,4-dimethoxyanthracenes (1g) and ( 2 g ) were prepared by reduction of the appropriate anthracenes with lithium in hexamethylphosphoric triamide (HMPT)-tetrahydrofuran (THF). Lapouyade et al. ${ }^{21}$ have reported that the stereochemical outcome of the reduction of 9,10 -diethylanthracene ( 8 b ) with lithium depends on the HMPT-THF ratio; with an excess of HMPT the cis-isomer (1b) is formed predominantly and with an excess of THF the transisomer (2b) is the exclusive product. However, in the present work, reduction of 9,10-dipropylanthracene (8c) with lithium in various proportions of HMPT and THF gave the trans-isomer (2c) as the sole product. Also, reduction of 9,10-diethyl-1,4-
dimethoxyanthracene ( $\mathbf{8 g}$ ) in HMPT-THF (1:4) yielded a mixture of the cis- and trans-9,10-dihydro derivatives ( 1 g ) and $(2 \mathrm{~g})$. The stereoselectivity, noted by Lapouyade et al. ${ }^{21}$ for $9,10-$ diethylanthracene ( $\mathbf{8 b}$ ) does not therefore seem to be general.

The stereochemistry of the isomeric 9,10 -diethyl- 9,10 -dihydroanthracenes ( $\mathbf{1 b}$ ) and ( $\mathbf{2 b}$ ) was established unambiguously by the $X$-ray crystallographic study of the cis-isomer (1b), described in the following paper. The stereochemistry of the cis- and trans-isomers (1e) and (2e) of 9,10-dihydro-9,10-diisopropylanthracene has been established by Zeigler et al. ${ }^{18}$ and their assignments are supported by the present formation of the cis-isomer (1e) by catalytic hydrogenation of 9 -isopropenyl-10isopropylanthracene (9), and by isomerisation of the transisomer (2e) with sulphur. The stereochemical assignments to the other isomeric pairs were made from their ${ }^{1} \mathrm{H}$ n.m.r. spectra by analogy with the spectra of the isomeric pairs of established stereochemistry. In particular, as pointed out by Redford, ${ }^{19}$ the peri-protons showed a greater chemical shift difference from the other aromatic protons in the trans-isomers. The 9,10-transstereochemistry of the hydroaromatic products was assumed from the method of preparation.

Discussion of the N.m.r. Data.-The data in Tables 1 and 2 indicate that the exceptionally highfield signals for alkyl $\beta$ protons are characteristic of the trans-isomers of 9,10-dialkyl9,10 -dihydroanthracenes which are further substituted in the 9,10 or peri-positions. The minimum requirement appears to be one additional substituent in the 9 -position [compound (23)]. 9,10-Dialkyl substituents alone (even the large t-butyl groups) are not sufficient. These structural requirements suggest that the highfield shifts of the $\beta$-protons are a consequence of severe interactions between the 9,10 -substituents and the peripositions. From an inspection of molecular models and from the crystal structure of cis-9,10-dihydro-9,10-dipropylanthracene9,10 -diol (3c), described in the following paper, it can be seen that the peri-interactions can be minimised for the cis-isomers in a boat conformation of the central ring with the $9,10-$ substituents in $\psi$-axial positions (cf. Rabideau and Pascal ${ }^{22}$ ). However, in the case of the trans-9,10-dialkyl isomers, further substituted in 9,10 or peri-positions, the peri-interactions are minimised in a planar conformation with the 9,10 -substituents and the peri-hydrogens or peri-substituents staggered. Molecular models also indicate that non-bonded interactions in a planar conformation of the highly substituted trans-isomers can be further minimised when the 9,10 -dialkyl substituents are placed over the central ring and there is some n.m.r. evidence that the alkyl substituents in 9,10 -dialkyl-9,10-dihydroanthracenes have unique conformations.
For example, in the cis- and trans-isomers (1e) and (2e) of 9,10 -dihydro-9,10-di-isopropylanthracene, the meso- and isopropylmethine protons show coupling constants of 10 and 5 Hz , respectively. Zeigler et al. ${ }^{18}$ have therefore suggested that, in the cis-isomer (1e), the $\psi$-axial isopropyl groups are rotated to minimise their trans-annular interaction, resulting in a dihedral angle of $180^{\circ}$ between the meso- and isopropylmethine protons; in the trans-isomer ( $\mathbf{2 e}$ ), it was suggested that these protons are eclipsed in a conformation which minimises interactions between the methyl groups and the peri-hydrogens. A similar situation obtains for the isomers of 9,10 -diethyl- 9,10 -dihydro-1,4-dimethoxyanthracene; in the cis-isomer (1g) the mesoprotons occur as a double doublet ( $J 5$ and 9 Hz ) and in the trans-isomer $(\mathbf{2 g})$ as a triplet $(J 5 \mathrm{~Hz})$. There is also clear evidence that the propyl groups in the cis- and trans-9,10-dihydro-9,10-dipropylanthracene-9,10-diols (3c) and (4c) have fixed conformations. In these compounds the methylene protons occur as an $A^{\prime} \mathbf{B B}^{\prime}$ system which was analysed ${ }^{23}$ from the $A A A^{\prime} \mathbf{X X}^{\prime}$ system, observed in the presence of tris $(2,2,6,6-$ tetramethylheptane-3,5-dionato)europium(III). The coupling

Table 3. ${ }^{1} \mathbf{H}$ Chemical shift gradients for the 9,10 -di-n-propyl 9,10 -diol ( $\mathbf{4 c}$ ) in $\mathrm{CDCl}_{3}$ containing five different concentrations of tris( $2,2,6,6$ -tetramethylheptane-3,5-dionato)europium(1i1) (negative values denote upfield shifts)

| Protons | Observed gradient | Conformation | Calculated gradient |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (28) | (28) | (28) | (28) | (28) | (29) | (30) |
|  |  | Eu-O bond length ( $\AA$ ) | 3.2 | 1.5 | 3.3 | 5.9 | 3.9 | 3.3 | 3.3 |
|  |  | Eu-O-C angle ( ${ }^{\circ}$ ) | 120 | 120 | 135 | 120 | 120 | 120 | 120 |
| $\alpha-\mathrm{Ar}$ | 5.30 |  | 6.8 | -0.08 | 3.1 | 2.9 | 4.7 | 6.2 | -0.14 |
| $\beta-A r$ | 1.00 |  | 2.4 | -0.05 | 1.0 | 1.2 | 1.6 | 0.1 | 0.04 |
| $\alpha-\mathrm{CH}_{2}$ | 7.11 |  | 6.7 | 1.0 | 3.2 | 4.6 | 6.3 | 0.53 | 1.00 |
| $\beta-\mathrm{CH}_{2}$ | 3.89 |  | 8.4 | -0.71 | 3.7 | 2.7 | 4.6 | 2.24 | -3.04 |
| $\gamma-\mathrm{Me}$ | 1.02 |  | 1.0 | 0.01 | 1.0 | 1.0 | 1.0 | $-1.0$ | $-1.0$ |


(28)

(30)

(29)

(31)
constants for the trans-compound (4c) were $J_{a x} \cdot 4.5 \mathrm{~Hz}$ and $J_{a x}$ 12.2 Hz . Insufficient cis-isomer (3c) was available for accurate measurements but the $J$ values were estimated to be the same.
These $J$ values indicate a staggered conformation for the methylene protons of the propyl substituents. Chemical shifts for the trans-isomer ( $\mathbf{4 c}$ ) were measured at five concentrations of the shift reagent and the relative least-squares gradients for the different protons were obtained (Table 3). By reiterative computation ${ }^{24}$ the relative gradients for each type of proton were calculated for the conformations (28), (29), and (30) using a series of parameters for the $\mathrm{Eu}-\mathrm{O}$ bond length and $\mathrm{Eu}-\mathrm{O}-\mathrm{C}$ bond angle. A fourth conformation (31) was not considered because of the severe interaction between the europium and the propyl substituent. Since the aromatic proton signals were shifted in sets of four, the europium cannot be associated with a specific oxygen. Shifts were therefore calculated by summation of the fields from the europium on either oxygen. The results of some of the calculations are shown in Table 3. Conformation (28) was the only reasonable one. Agreement between the observed and calculated relative gradients was best for a Eu-O bond length of $3.9 \AA$ and a $\mathrm{Eu}-\mathrm{O}-\mathrm{C}$ bond angle of $120^{\circ}$. The long $\mathrm{Eu}-\mathrm{O}$ bond length is reasonable for a tertiary alcohol.

The conformation (28), deduced for the europium(iII) complex with trans-9,10-dihydro-9,10-dipropylanthracene-9,10diol (4c) has been established for the trans-9,10-diol (4c) itself in the crystalline state (see following paper). In this conformation, the alkyl $\beta$-protons are placed over the planar central ring. It is therefore proposed that the trans-9.10-diol (4c), and other 9,10-dialkyl-9,10-dihydroanthracenes which are further substituted in the 9,10 or meso-positions, are constrained by meso-peri interactions into planar conformations
in which the 9,10-dialkyl substituents are placed over the central ring. In such conformations, the highfield chemical shift for the $\beta$-protons of the 9,10 -dialkyl substituents cannot be caused entirely by the magnetic anisotropy of the aromatic rings. For example, Johnson Bovey calculations ${ }^{4}$ for such a conformation of the 9,10 -diethyl compounds ( $\mathbf{2 b}$ ) and ( $\mathbf{4 b}$ ) indicate an aromatic shielding of $0.3-0.35$ p.p.m. for the methyl protons. That the magnetic anisotropy of the aromatic rings is only part of the shielding of the alkyl $\beta$-protons is supported by the chemical shifts of the methyl protons in the hydroaromatic compounds (24), (25), and (26). It is therefore suggested that the alkyl $\beta$-protons are also shielded by the magnetic anisotropy of the eclipsing $\mathrm{C}-\mathrm{C}$ bonds in the central ring.

## Experimental

M.p.s were determined with a Kofler hot-stage apparatus and are uncorrected. I.r. spectra refer to Nujol mulls and u.v. data to ethanol solutions unless otherwise stated. N.m.r. spectra were determined at 100 MHz for $\mathrm{CDCl}_{3}$ solutions with tetramethylsilane as internal standard; exceptionally for compounds with highfield signals, spectra were determined for chloroform or dichloromethane solutions using these solvent signals as internal locks. Mass spectra were obtained using an AEI-GEC MS902 and g.l.c.-mass spectra on LKB9000, Varian MAT CH-7 or AEI MS30 instruments, using silanised glass columns (1.5 $\mathrm{m} \times 4 \mathrm{~mm}$ ), packed with $2 \%$ QF-1 or $3 \%$ SE- 33 on Gaschrom Q. In analytical t.l.c. ( 0.3 mm ) plates were either viewed directly for Merck Kieselgel $\mathrm{HF}_{254}$ or for silica gel G, after spraying with $4 \%$ ceric sulphate in $10 \%$ aqueous sulphuric acid and heating. For preparative t.l.c., plates of Mallinkrodt SilicAR

TLC-7G, Merck Kieselgel $\mathrm{HF}_{254}$, or Woelm neutral alumina were pre-washed with ethyl acetate. For column chromatography, silica gel MFC (Hopkin and Williams) or Woelm neutral alumina (Grade 1) was used. Recovery means drying with sodium sulphate then evaporation of the filtrate in a rotary evaporator. Light petroleum had b.p. $60-80^{\circ} \mathrm{C}$ and ether refers to diethyl ether.

Grignard Reactions.-These reactions were performed in a stream of dry nitrogen gas by adding a solution of the anthraquinone in sodium-dried ether (or anisole) to a cooled ethereal solution of the Grignard reagent (3- to 15 -fold excess), prepared in the usual way. The initially vigorous reaction was moderated by cooling in an ice-water mixture. The reaction mixture was boiled for 4 to 11 h , cooled, and poured over an icewater mixture which was adjusted to pH 7 with 3 M -hydrochloric acid then immediately to pH 8 with 1.5 m -sodium carbonate. This mixture was extracted with ether and the dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ extract was concentrated stepwise until unchanged anthraquinone ceased to be deposited. Further concentration gave a crude product which was worked up as described below for each reaction. Yields were calculated on the anthraquinone consumed.

Photo-oxygenations.-Solutions of the anthracenes in methanol or pyridine were irradiated in a glass tube ( 4 cm diam.) by a 125 W mercury discharge unit ( $93 \%$ radiation at 365 nm ) at a distance of $2-5 \mathrm{~cm}$ from the tube. Dried oxygen was bubbled through the solution which was cooled externally by compressed air. Irradiation was continued until the anthracene fluorescence had faded. The reaction solution was then evaporated to dryness to give a crude product, purified as described below for each case.
cis-9,10-Dimethylanthracene-9,10-diol (3a).-From anthraquinone ( 6.0 g ), methyl iodide ( 15 ml ) and magnesium ( 5.0 g ) in refluxing ether for 7 h , the cis-9,10-dimethyl 9,10 -diol (3a) was obtained from ether as needles ( 4.8 g ), m.p. 201-203 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{2}$ $200^{\circ} \mathrm{C}$ ); $\lambda_{\text {max. }} 263.5 \mathrm{~nm}(\varepsilon 713) ; v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3577$ and 3350 $\mathrm{cm}^{-1} ; m / z 240\left(M^{+}, 0.5 \%\right), 225(100)$, and 210 (65).
trans-9,10-Diethyl-9,10-dihydroanthracene-9,10-diol (4b).From anthraquinone ( 4.5 g ), ethyl bromide ( 6 ml ), and magnesium ( 3.32 g ) in refluxing ether for 4 h , there was isolated unchanged anthraquinone ( 200 mg ) and the trans- 9,10 -diethyl 9,10 -diol (4b), needles ( 1.1 g ) m.p. 177-177.5 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{5}$ $175^{\circ} \mathrm{C}$ ) (from ethyl acetate-light petroleum); $\lambda_{\max } 264 \mathrm{~nm}(\varepsilon$ 445), $\lambda_{\text {infl. }} 257$ and 273 nm ( $\varepsilon 375$ and 316).

9,10-Diethylanthracene (8b).-trans-9,10-Diethyl-9,10-di-hydroanthracene-9,10-diol (4b) ( 3.0 g ), in acetic acid ( 26 ml ) was added to frozen phenylhydrazine $(6 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was brought rapidly to the boil and kept under reflux for 0.5 h . On concentration, 9,10-diethylanthracene (8b) was deposited as yellow plates ( 1.9 g ), m.p. $146-147^{\circ} \mathrm{C}$ (lit., ${ }^{5}$ $147^{\circ} \mathrm{C}$ ); $\lambda_{\text {max. }}$ (hexane) $252,260.5,358,376,392$, and 397 nm ( $\varepsilon 58500,13200,4500,7500,4800$, and 7800 ); $v_{\text {max. }} 3060$, 1620 , and $760 \mathrm{~cm}^{-1} ; \delta 1.15(\mathrm{t}, J 7 \mathrm{~Hz}, 2 \times \mathrm{Me}), 3.58(\mathrm{q}, J 7 \mathrm{~Hz}$, $\left.2 \times \mathrm{CH}_{2} \mathrm{Me}\right)$, and $c a .7 .85\left(\mathrm{~A}_{2} \mathrm{~B}_{2}, 8 \times \mathrm{ArH}\right)$.

9,10-Epidioxy-9,10-diethyl-9,10-dihydroanthracene (7b).Prepared from 9,10-diethylanthracene (8b) ( 500 mg ) in methanol ( 40 ml ), this compound crystallised from methanol or ethanol as needles ( 310 mg ) m.p. $203-204^{\circ} \mathrm{C}$ (lit., ${ }^{5} 214{ }^{\circ} \mathrm{C}$ ) (Found: $M^{+}, 266.128$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}: M, 266.130$ ); $v_{\text {max. }}$ 3060 and $880 \mathrm{~cm}^{-1}$.
cis-9,10-Diethyl-9,10-dihydroanthracene-9,10-diol (3b).The epidioxide ( 7 b ) ( 35 mg ) in ethyl acetate ( 3 ml ) was shaken
for 3 h at room temperature with $2 \%$ palladium on barium carbonate ( 180 mg ) and hydrogen gas. Evaporation of the filtrate gave the cis-9,10-diethyl 9,10-diol (3b), m.p. $146.8^{\circ} \mathrm{C}$ (lit., ${ }^{5} 150{ }^{\circ} \mathrm{C}$ ) (from light petroleum) (Found: C, 80.9; H, 7.6. Calc. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 80.6, \mathrm{H}, 7.5 \%$ ); $\lambda_{\text {max. }} 260.5 \mathrm{~nm}(\varepsilon 490)$, $\lambda_{\text {inf1. }} 255,266$, and $270 \mathrm{~nm}(\varepsilon 437,393$, and 286).

Reduction of the epidioxide (3b) with lithium aluminium hydride gave a mixture of the cis- and trans-diols (3b) and (4b) and hydrogenation with $10 \%$ palladium on charcoal yielded the cis-isomer (3b), 9,10-diethylanthracene (8b), starting material and an unidentified compound.
trans-9,10-Dihydro-9,10-dipropylanthracene-9,10-diol (4c).Anthraquinone ( 9.0 g ), propyl bromide ( 30.75 ml ), and magnesium ( 6.0 g ) in refluxing ether for 5 h gave unchanged anthraquinone ( 1.56 g ) and the required 9,10-dipropyl 9,10 -diol (4c) as needles ( 4.4 g ), m.p. $182^{\circ} \mathrm{C}$ (lit., ${ }^{5} 179{ }^{\circ} \mathrm{C}$ ) (from ether) (Found: C, 81.1; H, 8.0. Calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}$ : C, 81.1; H, 8.1\%); $\lambda_{\text {max. }} 263.5 \mathrm{~nm}(\varepsilon 423), \lambda_{\text {inf1. }} 272 \mathrm{~nm}(\varepsilon 296) ; m / z 296\left(M^{+}, 0 \%\right)$, 262 (5), 254 (20), 253 (100), and 211 (27).

The $\delta$-values (in Hz from tetramethylsilane) for $\mathrm{CDCl}_{3}$ solutions of the trans-diol ( 4 c ) $(17.6 \mathrm{mg}$ ) containing $6.8,15.7$, $24.5,33.0$, and 40.4 mg of tris(2,2,6,6-tetramethylheptane-3,5dionato)europium(III) were: $\mathrm{Me}(72,98,122,149.2$, and 169.4), $\beta-\mathrm{CH}_{2}\left(89.4,186.2,280.6,382.4\right.$, and 46.5), $\alpha-\mathrm{CH}_{2}(284,467.4$, $633.8,827.8$, and 967), $\beta-\mathrm{ArH}$ (746.6, 772.8, 797, 824.6, and 844.6), and $\alpha$-ArH (826.6, 977, $1093.7,1$ 232.7, and 1342.5 ).

9,10-Dipropylanthracene (8c).-The diol (4c) (1.0 g) and phenylhydrazine ( 2.0 ml ) were warmed for 0.5 h in acetic acid. On cooling the anthracene ( 8 c ) was deposited as yellow plates ( 590 mg ), m.p. $140.3-141^{\circ} \mathrm{C}$ (lit., ${ }^{5} 141^{\circ} \mathrm{C}$ ) (Found: C, $91.8 ; \mathrm{H}$, 8.3. Calc. for C, $91.6 ; \mathrm{H}, 8.5 \%$; ; $\lambda_{\text {max. }} 260,357,376$, and $397 \mathrm{~nm}(\varepsilon$ $141500,5250,7850$, and 8950 ), $\lambda_{\text {infl }} 252 \mathrm{~nm}(\varepsilon 71600) ; m / z$ $262\left(M^{+}, 72 \%\right), 233(100)$, and 191 ( 83 ).

9,10-Epidioxy-9,10-dihydro-9,10-dipropylanthracene (7c).Prepared from the anthracene ( 8 c ) ( 200 mg ) in dry pyridine ( 50 ml ) in a stream of oxygen for 2.5 h , the epidioxide (7c) crystallised from methanol as needles ( 174 mg ), m.p. 170 $171{ }^{\circ} \mathrm{C}$ (lit., ${ }^{5} 170^{\circ} \mathrm{C}$ ); $\lambda_{\text {max. }} 271 \mathrm{~nm}(\varepsilon 2940) ; \delta 1.11(\mathrm{t}, J 7 \mathrm{~Hz}$, $2 \times \mathrm{Me}), 1.80\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.55\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2^{-}}\right.$ Me ), and $c a .7 .30(\mathrm{~m}, 8 \times \mathrm{Ar} H) ; m / z 294\left(M^{+}, 0 \%\right), 262(81)$, 2101 (100), and 159 (98).
cis-9,10-Dihydro-9,10-dipropylanthracene-9,10-diol (3c).The epidioxide ( 7 c ) ( 50 mg ) in ethyl acetate ( 20 ml ) was hydrogenated for 2 h with hydrogen and $2 \%$ palladium on barium carbonate ( 250 mg ). The cis-9,10-dipropyl 9,10-diol (3c) crystallised from light petroleum as prisms ( 45 mg ), m.p. 162$164^{\circ} \mathrm{C}$ (lit., ${ }^{5} 165^{\circ} \mathrm{C}$ ) (Found: C, 81.2; H, 8.0. Calc. for $\mathrm{C}_{22}-$ $\mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C}, 81.0 ; \mathrm{H}, 8.2 \%$ ); $\lambda_{\text {max. }} 260 \mathrm{~nm}(\varepsilon 592), \lambda_{\text {infl }} .270 \mathrm{~nm}(\varepsilon$ 370); $m / z 296\left(M^{+}, 0 \%\right), 278(3), 262(96), 235(46), 231(40)$, and 193 (40).

The $\delta$-values (in Hz from tetramethylsilane) for $\mathrm{CDCl}_{3}$ solutions of the cis-diol ( 3 c ) $(5.3 \mathrm{mg})$ to which were added 2.8 , $6.3,8.7$, and 11.0 mg of tris(2,2,6,6-tetramethylheptane-4,5dionato)europium(111) were: $\mathrm{Me}\left(78.4,92,94.2\right.$, and 100 ), $\beta-\mathrm{CH}_{2}$ (137.2, 202.6, 220, and 248.4), $\alpha-\mathrm{CH}_{2}(180,268,288.2$, and 327), and $\beta-\mathrm{ArH}$ (776.2, 820.6, 857.6, and 884.6).

Hydrogenation of the epidioxide (7c) with $10 \%$ palladium on charcoal gave a mixture of the cis-diol (3c) $(80 \%)$, the trans-diol (4c) ( $4 \%$ ), 9,10-dipropylanthracene (8c) (4\%), and starting material.

9-trans-Propenyl-10-propylanthracene (10).-The trans-diol (4c) $(300 \mathrm{mg})$ in acetone ( 30 ml ) and 10 m -hydrochloric acid ( 2.5 ml ) were heated on a water-bath for 1 h and then neutralised
with solid potassium carbonate. Recovery gave the propenyl derivative (10), as prisms ( 225 mg ), m.p. $116-9{ }^{\circ} \mathrm{C}$ (from ethanol) (lit., ${ }^{25} 125-126^{\circ} \mathrm{C}$ ) (Found: C, 92.1; H, 7.6. Calc. for $\mathrm{C}_{20} \mathrm{H}_{20}: \mathrm{C}, 92.3 ; \mathrm{H}, 7.7 \%$ ); $\lambda_{\text {max. }}$. (cyclohexane) $261,357,375$, and $395 \mathrm{~nm}\left(\varepsilon 117000,4875,7800\right.$, and 7410 ); $\lambda_{\text {infl. }} 253 \mathrm{~nm}(\varepsilon$ 71500 ); $\delta 1.11$ (t, J $7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$ ), 1.81 (m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$ ), 2.07 (dd, $J 2$ and $7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} M e$ ), $3.50\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$ ), 5.87 (dq, $J 7$ and $16 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHMe}$ ), 7.07 (dd, $J 2$ and 16 Hz , $-\mathrm{CH}=\mathrm{CHMe}), c a .7 .38(\mathrm{~m}, 4 \times \mathrm{ArH})$ and $c a .8 .25(\mathrm{~m}, 4 \times \mathrm{ArH})$; $m / z 260\left(M^{+}, 52 \%\right), 231$ (75), 217 (55), 216 (37), 215 (52), and 43 (100).

The anthracene (10) was also obtained from the cis-9,10dipropyl 9,10-diol (3c) under the same conditions but at a slower rate.

9-Propylidene-10-propylanthracen-10-ol (20).-A solution of trans-9,10-dihydro-9,10-dipropylanthracene-9,10-diol (4c) (80 mg ) in ethanol-free chloroform ( 15 ml ) and acetic acid ( 1 ml ) was heated under reflux for 8 h and then neutralised with potassium carbonate. Recovery yielded the propenylanthracene (20) as needles ( 55 mg ), m.p. $134-137^{\circ} \mathrm{C}$ (from light petroleum) (Found: $M^{+}$, 278.167. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}$ requires $M, 278.167$ ); $\lambda_{\text {max. }} 261$ $\mathrm{nm}(\varepsilon 11715)$; $\delta 0.68$ and 1.10 (both $\mathrm{t}, J 7 \mathrm{~Hz}, 2 \times \mathrm{Me}$ ), ca. 1.20 (m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$ ), $1.64\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{Et}\right), 2.56\left(\mathrm{q}, \mathrm{J} 7 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{Me}\right)$, 6.03 (t, J $7 \mathrm{~Hz}, \mathrm{CHEt}$ ), and $7.3-7.80(\mathrm{~m}, 8 \times \mathrm{Ar} H)$.
G.l.c. and t.l.c. of the mother liquors indicated the presence of starting material ( $6 \%$ ), the cis-9,10-diol (3c) ( $4 \%$ ), and 9 -prop-1-enyl-10-propylanthracene (10) (5\%).

## trans-9,10-Dihydro-9,10-diphenethylanthracene-9,10-diol

 $(4 \mathrm{~d})$.-The reaction between anthraquinone ( 15 g ), phenethyl bromide ( 30 ml ) and magnesium ( 10 g ) in refluxing ether for 8 h gave anthraquinone ( 2.0 g ) and the trans-diol (4d), plates $(8.25$ g), m.p. $223^{\circ} \mathrm{C}$ (decomp.) (lit., ${ }^{5} 223^{\circ} \mathrm{C}$ ) (Found: C, 85.9; H, 6.7. Calc. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{2}: \mathrm{C}, 85.7 ; \mathrm{H}, 6.7 \%$ ); $\lambda_{\text {max. }} 267 \mathrm{~nm}(\varepsilon 3500)$; $m / z 430\left(M^{+}, 0 \%\right), 396(26), 304(76), 302(47), 157(76)$, and 51 (100).9,10-Diphenethylanthracene (8d).-The trans-diol (4d) and phenylhydrazine ( 5 ml ) were warmed for 0.5 h in acetic acid ( 20 ml ). On cooling, the anthracene (8d) was deposited as plates ( 1.52 g ), m.p. $192-194{ }^{\circ} \mathrm{C}$ (from acetone) (lit., ${ }^{5} 190-191^{\circ} \mathrm{C}$ ) (Found: C, 92.7; H, 6.65. Calc. for $\mathrm{C}_{30} \mathrm{H}_{26}$ : C, 93.2; H, $6.8 \%$ ); $\lambda_{\text {max. }}$ (cyclohexane) 262, 342, 358, 377, and $398 \mathrm{~nm}(\varepsilon 150540$, $3088,7720,13896$, and 14050 ), $\lambda_{\text {infl. }} 253 \mathrm{~nm}(\varepsilon 81060) ; \delta c a$. $3.05\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right)$, $c a .3 .85\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, $c a .7 .25$ $(\mathrm{m}, 4 \times \mathrm{Ar} H)$, and $c a .7 .88(\mathrm{~m}, 4 \times \mathrm{ArH}) ; m / z 386\left(M^{+}, 14 \%\right)$, 295 (39), and 91 (100).

9,10-Epidioxy-9,10-dihydro-9,10-diphenethylanthracene (7d).-The anthracene (8d) ( 200 mg ) in pyridine ( 200 ml ) was irradiated in a stream of oxygen for 6 h to give the epidioxide (7d) as rhombs ( 172 mg ), m.p. 104-106 ${ }^{\circ} \mathrm{C}$ (from acetone) (lit., ${ }^{5}$ non-crystalline) (Found: C, 85.5; H, 6.2. Calc. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{2}$ : C, $86.1 ; \mathrm{H}, 6.3 \%$ ); $\lambda_{\text {max. }}$. (cyclohexane) $260 \mathrm{~nm}(\varepsilon 1254)$, $\lambda_{\text {infl. }} 267$ and $274 \mathrm{~nm}(\varepsilon 902$ and 714$)$; $\delta c a .3 .0\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$ and ca. 7.22 (m, $8 \times \operatorname{ArH}$ ); m/z 418 ( $M^{+}, 11 \%$ ), 386 (25), 347 (30), 295 (72), 209 (91), 191 (36), 165 (41), 152 (55), and 105 (100).
cis-9,10-Dihydro-9,10-diphenethylanthracene-9,10-diol (3d).The epidioxide (7d) ( 100 mg ) in ethyl acetate ( 25 ml ) was hydrogenated for 4 h over $2 \%$ palladium on barium carbonate $(300 \mathrm{mg})$. Recovery gave the cis-diol (3d) as needles ( 90 mg ), m.p. 193- $195^{\circ} \mathrm{C}$ (from light petroleum) (lit., ${ }^{5} 186^{\circ} \mathrm{C}$ ); $\lambda_{\text {max. }}$. $265 \mathrm{~nm}(\varepsilon 3150) ; m / z 430\left(M^{+}, 0 \%\right), 396(32), 325(75), 307$ (61), 305 (69), 220 (62), and 101 (100).

9-(trans-2-Phenylethenyl)-10-phenethylanthracene (11).-The trans-diol (4d) ( 200 mg ) in acetone ( 50 ml ) and 10 m -
hydrochloric acid ( 2 ml ) were heated for 1 h at $85^{\circ} \mathrm{C}$ and then neutralised with potassium carbonate. Recovery gave the olefin (11), needles ( 172 mg ), m.p. $194-196{ }^{\circ} \mathrm{C}$ (from acetone) (Found: C, 93.3; H, 6.5. $\mathrm{C}_{30} \mathrm{H}_{24}$ requires C, 93.7; H, 6.3\%); $\lambda_{\text {max. }}$ (hexane) $260,358,377$, and $396 \mathrm{~nm}(\varepsilon 32640,1920,3070$, and 3650 ); $\delta \quad c a .3 .04\left(\mathrm{~m}, \quad \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), \quad c a .3 .85(\mathrm{~m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ ), 6.83 and $7.83(\mathrm{AB}, J 17 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH})$, ca. $7.35(\mathrm{~m}$, $2 \times \mathrm{CH}_{2} \mathrm{Ph}$ and $4 \times \mathrm{ArH}$ ), and ca. $8.23(\mathrm{~m}, 4 \times \mathrm{ArH}) ; \mathrm{m} / \mathrm{z} 384$ ( $M^{+}, 38 \%$ ), 293 (100), 178 (12), and 215 (43).
trans-9,10-Dihydro-9,10-dipropan-2-ylanthracene-9,10-diol (4e) and 10-Hydroxy-3,10-dipropan-2-ylanthracen-9(10H)-one (12).-The reaction between anthraquinone ( 15 g ), propanyl bromide ( 30 ml ) and magnesium ( 15 g ) in refluxing ether for 6 h gave anthraquinone ( 5.2 g ) and a crude product which, in hot benzene ( 200 ml ), was washed with warm aqueous sodium dithionite until the aqueous layer was colourless. The residue, recovered from the benzene solution was triturated with light petroleum to give a crystalline mixture (by t.l.c. and g.l.c.) which was separated by p.l.c. on alumina developed with chloroform into: (a) the trans-diol (4e), $R_{\mathrm{F}} 0.75$, needles ( $1.7 \mathrm{~g}, 12 \%$ yield), m.p. $156.5-157^{\circ} \mathrm{C}$ (from light petroleum) (Found: $\mathrm{C}, 81.0 ; \mathrm{H}$, 8.0. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}$ requires C, 81.1; H, $8.1 \%$ ); $\lambda_{\text {max. }} 261 \mathrm{~nm}(\varepsilon 845)$; $m / z 296\left(M^{+}, 0.6 \%\right), 278$ (3), 262 (14), and 41 (100).
(b) The anthrone (12), $R_{\mathrm{F}} 0.80$, yellow needles ( $3.57 \mathrm{~g}, 26 \%$ yield) m.p. $110-111^{\circ} \mathrm{C}$ (from light petroleum) (lit., ${ }^{3} 109-$ $110^{\circ} \mathrm{C}$ ) (Found: C, 82.6; H, 7.6. Calc. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}$ : C, 81.6; H, $7.5 \%$ ); $\lambda_{\text {max. }} 238$ and $282 \mathrm{~nm}(\varepsilon 7840$ and 20580 ); $\delta 0.61$ and 0.63 (each d, $J 7 \mathrm{~Hz}$, non-equivalent $10-\mathrm{CHMeMe}$ ), $1.28(\mathrm{~d}, J 7 \mathrm{~Hz}$, $3-\mathrm{CHMe})_{2}$ ), 2.08 (q, J $7 \mathrm{~Hz}, 10-\mathrm{CHMe}$ ), $2.97(\mathrm{q}, J 7 \mathrm{~Hz}$, 2-CHMe ${ }_{2}$ ), $7.26-7.62$ (complex, $2-, 6-$ and $7-\mathrm{H}$ ), 7.67 (d, $J 2 \mathrm{~Hz}$, $4-\mathrm{H}), 7.82(\mathrm{dd}, J 2$ and $7 \mathrm{~Hz}, 5-\mathrm{H}), 8.05(\mathrm{~d}, J 8 \mathrm{~Hz}, 1-\mathrm{H})$, and 8.10 (dd, $J 2$ and $7.5 \mathrm{~Hz}, 8-\mathrm{H}$ ).

Attempted Preparation of 9,10-Dipropan-2-ylanthracene (8e): Formation of 9-Propen-2-yl-10-propan-2-ylanthracene (9).-(a) The trans-diol (4e) ( 20 mg ) was unchanged (g.l.c., t.l.c.) after 1 h in refluxing acetic acid $(0.4 \mathrm{ml})$ containing phenylhydrazine ( 0.1 $\mathrm{ml})$. Acetylphenylhydrazine, m.p. $129^{\circ} \mathrm{C}$, crystallised from the cooled reaction mixture.
(b) The trans-diol (4e) $(40 \mathrm{mg})$ in ether ( 20 ml ) was heated at $85^{\circ} \mathrm{C}$ for 15 min with stannous chloride ( 40 mg ) and $10 \mathrm{~m}-$ hydrochloric acid ( 2 ml ). Addition of an excess of potassium carbonate and recovery from the filtrate gave the olefin (9) as yellow plates ( 31 mg ), m.p. $182^{\circ} \mathrm{C}$ (from ethanol) (lit., ${ }^{26} 205^{\circ} \mathrm{C}$ ) (Found: C, 92.2; H, 7.6. Calc. for $\mathrm{C}_{20} \mathrm{H}_{20}: \mathrm{C}, 92.3 ; \mathrm{H}, 7.7 \%$ ); $\lambda_{\text {max. }}$. hexane) $261,356,372$, and $394 \mathrm{~nm}(\varepsilon 125500,4650,7430$, and 8360 ); $\left.\lambda_{\text {infl. }} 254 \mathrm{~nm}(\varepsilon 70570) ; \delta 1.73(\mathrm{~d}, J 7 \mathrm{~Hz}, \mathrm{CHMe})_{2}\right)$, $\left.2.20(\mathrm{~s},=\mathrm{CMe}), 4.52(\mathrm{~m}, J 7 \mathrm{~Hz}, \mathrm{CHMe})_{2}\right), 5.05$ and 5.67 (both m, $\mathrm{C}=\mathrm{CH}_{2}$ ), ca. 7.36 (m, 2-, 3-, 6-, and 7-H), and 8.28 (m, 1-, 4-, 5-, and $8-\mathrm{H}) ; m / z 260\left(M^{+}, 44 \%\right), 217(100), 215$ (25), and 202 (21).

The compound (9) was also obtained without the stannous chloride.

9,10-Dihydro-9-propan-2-yl-10-propan-2-ylideneanthracen-9ol (21).-The trans-diol (4e) ( 40 mg ) in chloroform ( 10 ml ) and acetic acid ( 0.4 ml ) was left for 24 h in the dark and then the solution was neutralised with potassium carbonate. Recovery gave the olefin (21) ( 28 mg ), m.p. $108-110^{\circ} \mathrm{C}$ (from light petroleum) (Found: C, 87.2; H, 7.1. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}$ requires $\mathrm{C}, 86.3$; $\mathrm{H}, 8.0 \%$ ); $\lambda_{\text {max. }} 261.5 \mathrm{~nm}(\varepsilon 12232) ; v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$, $3570 \mathrm{~cm}^{-1}(\mathrm{OH}) ; \delta 0.80\left(\mathrm{~d}, J 7 \mathrm{~Hz}, \mathrm{CHMe} \mathrm{e}_{2}\right), 1.85(\mathrm{~s}, \mathrm{OH})$, ca. $2.04\left(\mathrm{~m},=\mathrm{CMe}_{2} \text { and } \mathrm{CHMe}\right)_{2}$ ), and ca. $7.40(\mathrm{~m}, 8 \times \mathrm{ArH})$; $m / z 278\left(M^{+}, 4 \%\right), 260(5)$, and $235(100)$.

The anthracene (9) which was also detected (ca. $5 \%$ ) by g.l.c.mass spectrometry of the crude product was formed quantitatively when excess acetic acid was used.

Dehydrogenation of trans-9,10-Dihydro-9,10-dipropan-2ylanthracene (2e).-The dihydroanthracene (2e) ( 264 mg ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone ( 260 mg ) in benzene ( 20 ml ) were heated at $80^{\circ} \mathrm{C}$ for 5 days in a sealed tube. Recovery from the intensely fluorescent solution and extraction of the residue with light petroleum gave a mixture containing (g.l.c.-mass spectrometry) starting material ( $30 \%$ ) cis-9,10-dihydro-9,10-dipropan-2-ylanthracene (1e) (2\%), 9 -isopropenyl-10-propan-2-ylanthracene (9) ( $20 \%$ ) and 9,10-dipropan-2-ylanthracene (8e) ( $65 \%$ ). Fractional crystallisation from methanol gave 9,10-dipropan-2-ylanthracene (8e) containing $10 \%$ of the 9 -isopropenylanthracene (9). The following characterising data for 9,10-dipropan-2-ylanthracene (8e) were obtained from this mixture: needles, m.p. $116-118{ }^{\circ} \mathrm{C}$; $\lambda_{\text {max }}$. $261.5,340,354,372$, and $393 \mathrm{~nm}(\varepsilon 101525,1924,4440,6660$, and 6660 ); $\lambda_{\text {infl. }} 254 \mathrm{~nm}(\varepsilon 57640) ; \delta 1.72(\mathrm{~d}, J 7 \mathrm{~Hz}$, $2 \times \mathrm{CHMe}_{2}$ ), $4.46\left(\mathrm{~m}, 2 \times \mathrm{CHMe}_{2}\right)$, and $c a .7 .88(\mathrm{~m}$, $8 \times \mathrm{ArH}) ; m / z 254$ ( $M^{+}, 42 \%$ ), 209 (67), 202 (68), 201 (53), 186 (100), 185 (47), 157 (36), and 144 (42).

9,10-Epidioxy-9,10-dipropan-2-ylanthracene (7e).-The mixture ( 100 mg ) of 9,10-dipropan-2-ylanthracene (8e) and 9 -isopropenyl-10-propan-2-ylanthracene (9), obtained in the preceding experiment, was irradiated in methanol ( 60 ml ) in a stream of oxygen for 1.5 h . The recovered residue was crystallised from light petroleum to give the epidioxide (7e), m.p. $118-120^{\circ} \mathrm{C}$ (Found: $M^{+}$, 294.162. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $M$, 294.162); $\lambda_{\text {max. }}$. (cyclohexane) $270 \mathrm{~nm}(\varepsilon 1714) ; \delta 1.47(\mathrm{~d}, J 7 \mathrm{~Hz}$, $\left.\left.2 \times \mathrm{CHMe}_{2}\right), 3.07(\mathrm{~m}, J 7 \mathrm{~Hz}, \mathrm{CHMe})_{2}\right)$, and $7.23(\mathrm{~m}, 8 \times \mathrm{ArH})$; $m / z 294\left(M^{+}, 1 \%\right), 262(29), 209(36), 194(27), 152(42)$, and 41 (100).

9,10-Epidioxy-9-isopropenyl-10-propan-2-ylanthracene.-The anthracene (9) ( 10 mg ) in methanol ( 10 ml ) was photooxygenated in the usual way to give the epidioxide, needles m.p. $178{ }^{\circ} \mathrm{C}$ (from light petroleum) (Found: $\mathrm{C}, 82.4 ; \mathrm{H}, 7.1$. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2}$ requires C, 82.3; $\mathrm{H}, 6.9 \%$ ); $\lambda_{\text {max. }} 271 \mathrm{~nm}(\varepsilon 1371)$; $\left.\delta 1.53(\mathrm{~d}, J 7 \mathrm{~Hz}, \mathrm{CHMe})_{2}\right) ; 2.10(\mathrm{~s},=\mathrm{CMe}), 3.10(\mathrm{~s}, J 7 \mathrm{~Hz}$, CHMe 2 ), 5.14 and 5.70 (both $\mathrm{m},=\mathrm{CH}_{2}$ ), ca. 7.17 (m, 2-, 3-, 6-, and $7-\mathrm{H}$ ), and $c a .7 .47(\mathrm{~m}, 1-, 4-, 5-$, and $8-\mathrm{H}) ; m / z 292\left(M^{+}, 4 \%\right)$, $260(100), 259(59), 258(57), 217(61), 215(57), 210(55)$, and 202 (63).
cis-9,10-Dihydro-9-isopropenyl-10-propan-2-ylanthracene-$9,10-$ diol.-The above epidioxide ( 40 mg ) in ethyl acetate ( 20 ml ) was hydrogenated for 2 h over $2 \%$ palladium on barium carbonate to give the cis-diol as needles ( 35 mg ), m.p. $147-$ $149^{\circ} \mathrm{C}$ (from light petroleum) (Found: $\mathrm{C}, 81.3 ; \mathrm{H}, 7.4$. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}$ requires C, 81.6; $\mathrm{H}, 7.5 \%$ ); $\lambda_{\text {max. }} 260 \mathrm{~nm}(\varepsilon 1175)$; $\delta 0.79\left(\mathrm{~d}, J 7 \mathrm{~Hz}, \mathrm{CH} M \mathrm{e}_{2}\right), 1.75(\mathrm{~s},=\mathrm{CMe}), 1.85(\mathrm{~m}, J 7 \mathrm{~Hz}$, $\mathrm{CH} \mathrm{Me}_{2}$ ), 4.35 and $4.78\left(\mathrm{~m},=\mathrm{CH}_{2}\right), c a .7 .25(\mathrm{~m}, 2-, 3-, 6$-, and $7-\mathrm{H}$ ), and $7.67(\mathrm{~m}, 1-, 4-, 5-$, and $8-\mathrm{H}) ; m / z 294\left(M^{+}, 0 \%\right), 276(2)$, 251 (73), 233 (75), 217 (100), and 215 (54).
cis-9,10-Dihydro-9,10-dipropan-2-ylanthracene-9,10-diol (3e).-(a) The epidioxide (7e) ( 30 mg ) in ethyl acetate ( 10 ml ) was hydrogenated for 2 h over palladium on barium carbonate $(100 \mathrm{mg})$ to give the cis-diol (3e), needles ( 23 mg ), m.p. $175-$ $176{ }^{\circ} \mathrm{C}$ (from light petroleum) (Found: C, 80.8; H, 8.3. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}$ requires C, $81.0 ; 8.2 \%$ ); $\lambda_{\text {max. }} 261 \mathrm{~nm}(\varepsilon 370) ; m / z 296$ ( $M^{+}, 0 \%$ ), 262 (3), 253 (82), 211 (94), 210 (100), and 181 (30).
(b) cis-9,10-Dihydro-9-isopropenyl-10-propan-2-yl-
anthracene-9,10-diol ( 40 mg ) in ethyl acetate ( 15 ml ) was hydrogenated for 40 h over $10 \%$ palladium on charcoal ( 100 $\mathrm{mg})$ to give the cis-diol (3e) ( 34 mg ) m.p. $175-176^{\circ} \mathrm{C}$.

Attempted Preparation of 9,10-Dihydro-9,10-dibutan-2-ylanthracene-9,10-diol.-From anthraquinone ( 10 g ), butan-2-
yl bromide ( 25 ml ), and magnesium ( 6 g ) in refluxing ether for 7 h , anthraquinone ( 437 mg ) was recovered together with a yellow oil which was filtered, in light petroleum, through a column ( $30 \times 2.5 \mathrm{~cm}$ ) of silica gel. Elution with increasing amounts of ether-light petroleum gave successively: (a) 9-butan-2-yl-10-butan-2-ylidene-9,10-dihydro-anthracene-9-ol (18) as an intractable oil, even after re-chromatography on silica gel ( $30 \times 2.5$ cm ) and elution with $2 \%$ ether in light petroleum, but homogeneous by t.l.c. and g.l.c. (Found: $M^{+}, 306.199 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}$ requires $M, 306.198$ ); $\lambda_{\text {max. }} 261 \mathrm{~nm}(\varepsilon 11016)$; $v_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 3590$, $3460(\mathrm{OH})$ and $1634 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.67$ and 1.18 (both t, J $7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Me}$ ), 1.00 (d, J $7 \mathrm{~Hz}, \mathrm{CH} M \mathrm{e}$ ), ca. 1.30 (m, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), c a .1 .65[\mathrm{~m}, \mathrm{CH}(\mathrm{Me}) \mathrm{Et}], c a .2 .50\left[\mathrm{~m},=\mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2}\right]$, $2.06[\mathrm{~s},=\mathrm{C}(M e) \mathrm{Et}]$ and 7.15-7.70 (m, $8 \times \mathrm{Ar} H) ; m / z 306$ ( $M^{+}, 2 \%$ ), 250 (42), 249 (100), and 194 (24).
(b) 3,10-Dibutan-2-yl-10-hydroxyanthrone (13) as a yellow oil, homogeneous by t.l.c. and g.l.c. (Found: $M^{+}$, 322.193. $\mathrm{C}_{22^{-}}$ $\mathrm{H}_{26} \mathrm{O}_{2}$ requires $M, 322.193$ ); $\lambda_{\text {max. }} 287 \mathrm{~nm}(\varepsilon \quad 15295$ ); $v_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 3590,3450(\mathrm{OH})$, and $1678 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \delta 0.4-0.8$ $\left(2 \times \mathrm{CH}_{2} M e\right.$ and $\left.1 \times \mathrm{CH} M e\right), 1.22(\mathrm{~d}, J 7 \mathrm{~Hz}, \mathrm{CH} M e), 1.60(\mathrm{q}$, $\left.J 7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{Me}\right), 2.68(\mathrm{~m}, J 7 \mathrm{~Hz}, 2 \times \mathrm{CH})$, and $7.2-8.0$ (m, $7 \times \operatorname{Ar} H$ ); $m / z 322\left(M^{+}, 9 \%\right.$ ), 267 (45), 266 (100), 265 (89), 210 (23), and 209 (26).
Further elution gave small amounts of two compounds, possibly 3,6-dibutan-2-yl-10-hydroxyanthrone, m.p. 110$114{ }^{\circ} \mathrm{C} ; m / z 322(3 \%), 265(29)$, and 43 (100); and 2-butan-2ylanthraquinone; $m / z 264$ (31), 235 (100), 207 (25), and 78 (22).

Attempted Preparation of 9,10-Dihydro-9,10-t-butyl-anthracene-9,10-diol (3f, 4f).-From anthraquinone ( 10 g ), t -butyl bromide ( 20 ml ), and magnesium ( 4 g ) in refluxing ether for 11 h , anthraquinone ( 400 mg ) was recovered together with an orange syrup which was dissolved in hot benzene and washed with aqueous sodium dithionite. Recovery from the benzene layer gave a yellow oil which was repeatedly crystallised from light petroleum to give 10-hydroxy-3,10-di-tbutylanthrone (16) as needles ( $37 \%$ yield), m.p. $168-170^{\circ} \mathrm{C}$ (lit., ${ }^{11} 169-170^{\circ} \mathrm{C}$ ).

The material, recovered from the mother liquors, was chromatographed on a column ( $30 \times 2.5 \mathrm{~cm}$ ) of silica gel. Elution with $1 \%$ acetone in light petroleum gave a mixture of two components (g.l.c.) which were separated by fractional crystallisation from light petroleum to give: (a) 2-t-butylanthraquinone (17) as yellow needles ( $15 \%$ yield), m.p. 102.5$103.5^{\circ} \mathrm{C}$ (lit., ${ }^{11} 102-103^{\circ} \mathrm{C}$ ) and (b) 9,10-dihydroxy-9-tbutylanthracene (19) as needles ( $2 \%$ yield), m.p. $128-133^{\circ} \mathrm{C}$ (Found: C, 80.1; H, 7.7. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.6 ; \mathrm{H}, 7.5 \%$ ); $\lambda_{\text {max. }} 261 \mathrm{~nm}(\varepsilon 1005) ; \delta 0.77\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 5.35(\mathrm{~s}, 10-\mathrm{H})$, ca. 7.25 ( $2-, 3-, 6-$, and $7-\mathrm{H}$ ) and ca. 7.65 (1-, 4-, 5-, and $8-\mathrm{H}$ ); $m / z 268$ $\left(M^{+}, 0 \%\right), 211(100), 194$ (69), and 155 (37).

## cis-9,10-Dihydro-1,4-dimethoxy-9,10-dimethylanthracene-

 9,10-diol (3h).-(a) From 1,4-dimethoxyanthraquinone ${ }^{27}$ ( 0.5 g ), methyl iodide ( 2 ml ), and magnesium ( 0.5 g ) in refluxing ether for 7 h , the crude product was chromatographed on a column ( $15 \times 1.5 \mathrm{~cm}$ ) of silica gel. Elution with $1-5 \%$ ether in light petroleum gave the cis-diol ( 3 h ) as prisms $(0.41 \mathrm{~g})$, m.p. 194-197 ${ }^{\circ} \mathrm{C}$ (from light petroleum) (lit., ${ }^{7} 199-200^{\circ} \mathrm{C}$ ); $\lambda_{\text {max. }}$ $289.5 \mathrm{~nm}(\varepsilon 3000) ; \delta 1.68(\mathrm{~s}, 2 \times \mathrm{Me}), 3.90(\mathrm{~s}, 2 \times \mathrm{OMe}), 5.48$ $(2 \times \mathrm{OH}), 6.86(\mathrm{~s}, 2-\mathrm{and} 3-\mathrm{H})$, and $c a .7 .57(\mathrm{~m}, 5-, 6-, 7-$, and $8-$ H); $m / z 340\left(M^{+}, 10 \%\right), 325(42), 310(35), 307(100)$, and 278 (32).(b) The above diol ( 10 mg ), warmed with phenylhydrazine $(0.25 \mathrm{ml})$ in acetic acid $(0.75 \mathrm{ml})$ for 15 min , gave the $9,10-$ dimethylanthracene (8h) (6 mg), m.p. $76-78^{\circ} \mathrm{C}$ (lit., ${ }^{7} 78-$ $79^{\circ} \mathrm{C}$ ) which was photo-oxygenated in methanol ( 5 ml ) for 1 h . The product in ethyl acetate ( 5 ml ) was shaken for 2 h with $2 \%$ palladium on barium carbonate $(10 \mathrm{mg})$ to yield the cis-diol ( 3 h ).
cis- and trans-9,10-Diethyl-9,10-dihydro-1,4-dimethoxyanthra-cene-9,10-diol ( $\mathbf{3 g}$ ) and ( $\mathbf{4 g}$ ).-1,4-Dimethoxyanthraquinone $(2 \mathrm{~g})$ in anisole ( 100 ml ) was added to the Grignard reagent from magnesium ( 2.5 g ) and ethyl bromide ( 8 ml ) in ether ( 15 ml ). The ether was removed by distillation and the reaction mixture was refluxed for 9 h . The recovered orange product was chromatographed on a column ( $30 \times 2.5 \mathrm{~cm}$ ) of silica gel which was developed with light petroleum-ether ( $9: 1$ ). Elution with this solvent mixture containing $1-10 \%$ acetone gave successively: (a) 1,4-dimethoxyanthracene ( $3 \%$ ), m.p. 135$136{ }^{\circ} \mathrm{C}$; (b) trans-9,10-diethyl-9,10-dihydro-1,4-dimethoxy-anthracene- 9,10 -diol $(\mathbf{4 g})$ as needles $(21 \%$ yield), m.p. $159-$ $162{ }^{\circ} \mathrm{C}$ (from light petroleum) (Found: C, $74.0 ; \mathrm{H}, 7.2 \% ; M^{+}$, 328.169. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $\mathrm{C}, 73.2 ; \mathrm{H}, 7.3 \% ; M, 328.167$ ); $\lambda_{\text {max }}$. $293 \mathrm{~nm}(\varepsilon 4290) ; m / z 328$ ( $M^{+}, 5 \%$ ), 327 (20), 299 (64), 281 (31), 270 (100), 255 (38), and 240 (88).
(c) cis-9,10-Diethyl-9,10-dihydro-1,4-dimethoxyanthracene-$9,10-$ diol ( 3 g ) as needles ( $20 \%$ yield), m.p. $140-143^{\circ} \mathrm{C}$ (from light petroleum) (Found: C, 72.7; H, $6.9 \% ; M^{+}$, 328.166; $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}$ requires C, $73.2 ; \mathrm{H}, 7.3 \% ; M^{+}, 328.169$ ); $\lambda_{\text {max. }} 290 \mathrm{~nm}$ ( $\varepsilon 3215$ ); $m / z 328$ ( $M^{+}, 1 \%$ ), 299 (77), 281 (30), 271 (23), 270 (100), and 255 (40).
cis-9,10-Diethyl-9,10-dihydro-1,4-dimethoxyanthracene-9,10diol ( $\mathbf{3 g}$ ).-A mixture ( 350 mg ) of cis- and trans-diols ( 3 g ) and $(4 \mathrm{~g})$ was heated for 15 min in acetic acid ( 3 ml ) containing phenylhydrazine ( 1 ml ). Elution of the crude product from a column ( $30 \times 2.5 \mathrm{~cm}$ ) of silica gel with light petroleum gave a yellow, unstable product [ $\delta 1.50(\mathrm{t}, 6 \mathrm{H}), 3.80(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{~s}, 6$ $\mathrm{H}), 6.60(\mathrm{~s}, 2 \mathrm{H})$, and $7.90(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{m} / \mathrm{z} 296(6 \%)$ and $43(100)]$ a portion ( 20 mg ) of which was directly photo-oxygenated in methanol ( 15 ml ) for 45 min . The product in ethyl acetate ( 10 $\mathrm{ml})$ was shaken for 2.5 h with hydrogen and $2 \%$ palladium on barium carbonate ( 20 mg ) to give the cis-diol ( 3 g ).

Isomerisation Experiments.-A solution of the 9,10-dialkyl 9,10-diols in ethanol-free chloroform containing 0.5-1.0\% acetic acid was kept at room temperature until reaction was complete (g.l.c. and t.l.c. monitoring). The solution was washed with aqueous sodium carbonate and water. The results were:
(a) the trans-diol (4b) gave a crude product ( 62 mg ) which was purified by t.l.c. on silica gel with dichloromethane to give the cis-diol (3b) ( 20 mg ), m.p. $146-148^{\circ} \mathrm{C}$. G.l.c. of the total product showed the cis:trans ratio to be $9: 1$.
(b) The cis-diol (3b) gave results identical with (a).
(c) The product from the trans-diol (4c) ( 200 mg ) was separated by t.l.c. on silica gel with chloroform to give the cisdiol (3c) $(70 \mathrm{mg})$, m.p. $163-164{ }^{\circ} \mathrm{C}$. G.l.c. of the total product showed the cis: trans ratio to be 4:3.
(d) The trans-diol (4e) was dehydrated (see earlier) and the diols $(3 \mathrm{a})$, $(3 \mathrm{~g})$, $(3 \mathrm{~h})$, and $(4 \mathrm{~g})$ were unchanged.
(e) The trans-diol (4d) isomerised slowly under these conditions but a solution of it ( 200 mg ) in acetone ( 50 ml ) and glacial acetic acid ( 1 ml ) was refluxed for 10 h to give the cis-diol (3d) $(158 \mathrm{mg})$, m.p. $190-192.5^{\circ} \mathrm{C}$.

Addition-Ethylation of Anthracene.-Anthracene $(90 \mathrm{mg}$, crystallised from ethanol and thoroughly dried) and ethyllithium ( 1.06 m in benzene; 2 ml ) in tetrahydrofuran ( 3 ml ; freshly distilled from lithium aluminium hydride) were stirred at $0^{\circ} \mathrm{C}$ in an atomosphere of nitrogen for 45 min . The red colour was discharged by freshly distilled ethyl bromide. Ether was added and the solution was washed with water. Evaporation of the dried organic layer gave an oil ( 134 mg ) which was subjected to p.l.c. with ethyl acetate-light petroleum (5:95). From the band at $R_{\mathrm{F}} 0.6$, an oily mixture ( 98 mg ) was obtained and shown to be a mixture (3:1) of cis- and trans-9,10-diethyl-9,10-dihydroanthracene by n.m.r. (see ref. 14 for data). Crystallisation of the product from ethanol gave the cis-isomer, m.p. $59-60^{\circ} \mathrm{C}$
(lit., ${ }^{14} 58-59{ }^{\circ} \mathrm{C}$ ); $m / z 236\left(M^{+}, 10 \%\right.$ ), 207 (100), 191 (8), 189 (6), 179 (51), 178 (91), 176 (10), 165 (3), 152 (8), and 76 (3).

Lithium-Ammonia Reduction of 9,10-Diethylanthracene (8b).-(a) To a solution of lithium ( 70 mg ) in ammonia ( 8 ml ; redistilled from lithium) at $-33^{\circ} \mathrm{C}$ was added dry $9,10-$ diethylanthracene ( 50 mg ) in tetrahydrofuran ( 8 ml ; freshly distilled from lithium aluminium hydride). The reaction mixture was stirred under nitrogen gas at $-33^{\circ} \mathrm{C}$. After 45 min iron(iII) chloride was added and after a further 45 min ethanol ( 15 ml ) and water ( 5 ml ) were added. The reaction mixture was left overnight and the residue was partitioned between ether and water. Evaporation of the ether gave a gum ( 50 mg ) which was purified by p.l.c. on silica gel-HF with light petroleum-ethyl acetate ( $95: 5$ ). The band at $R_{\mathrm{f}} 0.5$ gave trans- 9,10 -diethyl- $9,10-$ dihydroanthracene ( 2 b ) $\left(28 \mathrm{mg}\right.$ ), m.p. $53.5-56^{\circ} \mathrm{C}$ (from ethanol) (lit., ${ }^{15} 44-45^{\circ} \mathrm{C}$ ) containing ca. $7 \%$ of the cis-isomer by n.m.r.; $m / z 236\left(M^{+}, 4 \%\right), 207(100), 179$ (48), and 178 (86).

When this reduction was repeated without the addition of the iron(III) chloride, a mixture ( 25 mg ) was recovered from p.l.c. at $R_{\mathrm{F}} 0.5$ and shown to consist of cis- and trans-9,10-diethyl-9,10dihydroanthracenes and compound (26) in the ratio 22:71:7. Using different proportions of lithium, adding ethanol at the beginning of the reaction, conducting the reaction in the presence of air or at $-70^{\circ} \mathrm{C}$, essentially the same results were obtained.
(b) Preparation of the hydroaromatic compounds (24), (25), and (26). Using the procedure described in (a) but without the nitrogen atmosphere or addition of iron(III) chloride, lithium $(0.9 \mathrm{~g})$, ammonia ( 150 ml ) and 9,10-diethylanthracene ( 1.0 g ) gave a crude product which was crystallised from ethanol; it had m.p. $108-112{ }^{\circ} \mathrm{C}$. A portion ( 180 mg ) was fractionated by preparative t.l.c. on silica gel HF with light petroleum to give: (i) trans-9,10-diethyl-1,4,5,6,7,8,9,10-octahydroanthracene (24), $R_{F}$ 0.7 as needles, m.p. $137-137.5^{\circ} \mathrm{C}$ (from ethanol) (Found: C , 89.4; $\mathrm{H}, 11.4 \%$; $M^{+}, 242.202 . \mathrm{C}_{18} \mathrm{H}_{26}$ requires $\mathrm{C}, 89.2 ; \mathrm{H}, 10.8$; $M, 242.203) ; m / z 242\left(M^{+}, 3 \%\right), 213(100), 185(34), 171$ (21), and 141 (27). (ii) the material from $R_{\mathrm{F}} 0.6$ was a mixture (3:1) of two compounds by n.m.r. crystallisation from ethanol gave the major component, trans-9,10-diethyl-1,4,5,8,9,10-hexahydroanthracene (25), as needles ( 75 mg ), m.p. $117-118.5^{\circ} \mathrm{C}$ (Found: C, 89.8; H, $10.1 \% ; \mathrm{M}^{+}, 240.187 . \mathrm{C}_{18} \mathrm{H}_{24}$ requires $\mathrm{C}, 89.9 ; \mathrm{H}$, $10.1 \% ; M, 240.188$ ); m/z 240 (3\%), 211 (100), 209 (35), 169 (95), 141 (35), and 55 (28). The minor component contained aromatic protons ( $\delta c a .0 .48$ ) and by g.l.c.- mass spectrometry had $M^{+}$ 240; it is tentatively assigned structure (27). (iii) trans-9,10-Diethyl-1,4,9,10-tetrahydroanthracene (26) $R_{\mathrm{F}} 0.5$, as needles ( 81.4 mg ), m.p. $101.5-102.5^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 90.8; $\mathrm{H}, 9.7 \% ; \mathrm{M}^{+}$, 239.171. $\mathrm{C}_{18} \mathrm{H}_{22}$ requires C, $90.7 ; \mathrm{H}, 9.3 \% ; \mathrm{M}^{+}$, 238.172); $m / z 238$ (10), 209 (100), 181 (44), 179 (32), 178 (37), 167 (31), 71 (25), and 55 (34). This reduction could not be repeated.
cis-9,10-Dihydro-9,10-dipropylanthracene (1c).-Anthracene $(15 \mathrm{~g})$ and a dispersion of sodium ( 6 g ) in ether ( 50 ml ) were heated under reflux for 20 h . To the cooled mixture, propyl bromide ( 20 ml ) in sodium-dried ether ( 20 ml ) was added dropwise. After the initial vigorous reaction, the green solution was refluxed for 2 h . Recovery gave a gum which was dissolved in light petroleum. This solution, kept at $-5^{\circ} \mathrm{C}$, deposited cis-9,10-dihydro-9,10-dipropylanthracene (1c) which recrystallised from ethanol as needles ( $60 \%$ yield), m.p. $67-68{ }^{\circ} \mathrm{C}$ (Found: C, 90.7 ; H, 9.1. $\mathrm{C}_{20} \mathrm{H}_{24}$ requires C, 90.7 ; $\mathrm{H}, 9.2 \%$ ); $\lambda_{\text {max. }}$ (cyclohexane) $270 \mathrm{~nm}(\varepsilon 1120) ; \lambda_{\text {infl. }} 257$ and $263.5 \mathrm{~nm}(\varepsilon 725$ and 1055 ); $m / z 264$ ( $M^{+}, 21 \%$ ); 222 (75), 221 (100), 191 (51), 179 (78), and 178 (86).
trans-9,10-Dihydro-9,10-dipropylanthracene

$$
(2 c) .-(a)
$$ Lithium ( $c a .0 .4 \mathrm{~g}$ ) was dissolved in hexamethylphosphoramide

( 3 ml ) and tetrahydrofuran ( 12 ml ) by heating at $60^{\circ} \mathrm{C}$ in an atmosphere of nitrogen. After 24 h , the blue solution was cooled to $20^{\circ} \mathrm{C}$ and a solution of 9,10 -di-n-propylanthracene ( 88 mg ) in hexamethylphosphoramide ( 2 ml ) and tetrahydrofuran ( 8 ml ) was added. The orange solution was stirred at $20^{\circ} \mathrm{C}$ for 5 h under nitrogen gas. Water was added dropwise and stirring was continued for 1 h . Extraction with ether and recovery gave trans9,10 -dihydro-9,10-dipropylanthracene (2c) ( 72 mg ), m.p. $58-$ $60{ }^{\circ} \mathrm{C}$ (from ethanol) (Found: $\mathrm{C}, 91.3 ; \mathrm{H}, 8.8 . \mathrm{C}_{20} \mathrm{H}_{24}$ requires C , 90.9; H, 9.2); $\lambda_{\text {max. }}$ (cyclohexane) $271 \mathrm{~nm}(\varepsilon 1530) ; m / z 264$ ( $M^{+}$, $7 \%$ ), 222 (20), 221 (100), 179 (66), and 178 (54).
(b) When the anthracene ( 8 c ) ( 180 mg ) was reduced as described in (a) using lithium (ca. 0.4 g ) and HMPT-THF (7:1) the trans-compound ( $\mathbf{2 c}$ ) was obtained quantitatively.
(c) From the anthracene (8c) ( 70 mg ), sodium ( 0.7 g ), HMPT ( 4.5 ml ) and THF ( 3 ml ), the trans-isomer was obtained in $c a$. $50 \%$ yield.
cis-9,10-Dihydro-9,10-diphenethylanthracene (1d).-Anthracene ( 10 g ) and a dispersion of sodium ( 4.5 g ) in dry ether ( 40 ml ) were heated under reflux for 30 h with stirring and in an atmosphere of nitrogen. Phenethyl bromide ( 20 ml ) in dry ether 20 ml ) was added and the reaction was conducted and workedup as for the dipropyl compound (1c) to give cis-9,10-dihydro-9,10-diphenethylanthracene (1d) as an oil ( 10.2 g ), pure by t.l.c. (Found: $M^{+}, 388.218 . \mathrm{C}_{30} \mathrm{H}_{28}$ requires $M, 388.219$ ); $\lambda_{\text {max. }} 271$ $\mathrm{nm}(\varepsilon 1153) ; m / z 388$ (2), 180 (54), 179 (77), 178 (100), 177 (31), 176 (49), 152 (44), and 151 (31).

9,10-Diphenethyl-1,2,3,4-tetrahydroanthracene.-The olefin (20) ( 300 mg ) in ethanol ( 50 ml ) was hydrogenated for 40 h over $2 \%$ palladium on barium carbonate ( 300 mg ). The filtered reaction mixture was concentrated and cooled to $-5^{\circ} \mathrm{C}$ to give the tetrahydroanthracene as needles ( 210 mg ), m.p. 158 $160^{\circ} \mathrm{C}$ (Found: C, 92.6; H, 7.9. $\mathrm{C}_{30} \mathrm{H}_{30}$ requires $\mathrm{C}, 92.3 ; \mathrm{H}$, $7.7 \%$ ); $\lambda_{\text {max. }}$ (cyclohexane) $300 \mathrm{~nm}(\varepsilon 11700) ; \delta 1.79\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $2.85(\mathrm{~m}, 1-, 2-, 3-$, and $4-\mathrm{H}), 3.30\left(\mathrm{~m},\left[\mathrm{CH}_{2}\right]_{2} \mathrm{Ph}\right), 7.24(\mathrm{~m}$, $2 \times \mathrm{Ph})$ and $7.76(\mathrm{~m}, 5-, 6-, 7-$, and $8-\mathrm{H})$.
cis- and trans-9,10-Dihydro-9,10-dipropan-2-ylanthracenes (1e) and (2e).-(a) Anthracene ( 15 g ) and a dispersion of sodium $(5.5 \mathrm{~g})$ in ether ( 40 ml ) were heated under reflux for 50 h with stirring under nitrogen gas. Propan-2-yl bromide ( 22.5 ml ) in ether ( 22.5 ml ) was added dropwise to the cooled solution and the initial reaction was moderated by cooling in an ice-water mixture. The green solution was then refluxed for 2 h . Recovery gave an oil ( 19.1 g ) which deposited anthracene ( 2.5 g ) on cooling. The filtered oil in light petroleum was chromatographed on alumina; elution with the same solvent yielded (i) trans-9,10-dihydro-9,10-dipropan-2-ylanthracene ( 2 e ) as needles ( 6.7 g ), m.p. $75-75.5^{\circ} \mathrm{C}$ (from methanol) (lit., ${ }^{18} 76-77^{\circ} \mathrm{C}$ ) (Found: C, $90.7 ; \mathrm{H}, 9.0$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{24}$ : C, $90.9 ; \mathrm{H}, 9.2 \%$; $\lambda_{\text {max. }} 262.5 \mathrm{~nm}$ ( $\varepsilon 3300$ ); $m / z 264$ ( $M^{+}, 3 \%$ ), 221 (45), 179 (100), and 178 (38); (ii) cis-9,10-dihydro-9,10-dipropan-2-ylanthracene (1e) as rods ( 0.7 g ), m.p. $109-111^{\circ} \mathrm{C}$ (from methanol) (lit., ${ }^{18} \mathrm{~m} . \mathrm{p} .109-$ $110^{\circ} \mathrm{C}$ ) (Found: C, 91.2; H, 9.1. Calc. for $\mathrm{C}_{20} \mathrm{H}_{24}$ : C, 90.9; H, $9.2 \%$ ); $\lambda_{\text {max. }} 261.5 \mathrm{~nm}\left(\varepsilon 2753\right.$ ); $m / z 264$ ( $M^{+}, 4 \%$ ), 221 (49), 179 (100), and 178 (33).
(b) The olefin (9) ( 20 mg ) in ethanol ( 30 ml ) was hydrogenated for 2.5 h over $2 \%$ palladium on barium carbonate ( 100 mg ) to give the cis-9,10-dihydroanthracene ( $1 \mathbf{e}$ ) ( 16 mg ).
(c) The trans-9,10-dihydroanthracene (2e) ( 40 mg ) and sulphur ( 44 mg ) were heated at $220-230^{\circ} \mathrm{C}$ for 3 h under nitrogen gas. The sublimate was collected and crystallised from methanol to give the cis-9,10-dihydroanthracene (1e) ( 11 mg ).

Reductive $\boldsymbol{t}$-Butylation of Anthracene.-From anthracene (15 g) a dispersion of sodium ( 6 g ) in ether ( 50 ml ) and t -butyl
bromide ( 20 ml ) in ether ( 20 ml ), was obtained a gum ( 6.4 g ) which was fractionally crystallised from ether to yield: (a) trans9,10 -di-t-butylanthracene ( 2 f ) as rods, m.p. $176-177^{\circ} \mathrm{C}$ (lit., ${ }^{20}$ $176^{\circ} \mathrm{C}$ ) (Found: C, 90.2; H, 9.5. Calc. for $\mathrm{C}_{22} \mathrm{H}_{28}$ : C, $90.4 ; \mathrm{H}$, $9.6 \%$ ); $\lambda_{\text {max }}$. (cyclohexane) 260,267 , and $274 \mathrm{~nm}(\varepsilon 730,912$, and 730 ); $m / z 292\left(M^{+}, 0 \%\right), 236(9), 180(100)$, and 179 (45). (b) 9-t-Butyl-9,10-dihydroanthracene, needles (34\%), m.p. $121.5^{\circ} \mathrm{C}$ (from pentane) (lit., ${ }^{20} 126^{\circ} \mathrm{C}$ ) (Found: C, 91.7; H, 8.5. Calc. for $\mathrm{C}_{18} \mathrm{H}_{20}: \mathrm{C}, 91.5 ; \mathrm{H}, 8.5 \%$ ); $\lambda_{\text {max. }} 264$ and $271.5 \mathrm{~nm}(\varepsilon 944$ and 944); $m / z 236\left(M^{+}, 0 \%\right), 221(1), 180(16), 179(100)$, and 178 (58).
cis- and trans-9,10-Diethyl-9,10-dihydro-1,4-dimethoxyanthracene ( $\mathbf{1 g}$ ) and ( $\mathbf{2 g}$ ).-Lithium (ca. 0.4 g ) was dissolved in HMPT ( 3 ml ) and THF ( 12 ml ) by heating at $70^{\circ} \mathrm{C}$ under nitrogen. To the blue solution at $21^{\circ} \mathrm{C}$ was added $1,4-$ dimethoxy-9,10-diethylanthracene ( 75 mg ) in HMPT ( 2 ml ) and THF ( 8 ml ), and the resultant orange solution was stirred for 2 h and $21^{\circ} \mathrm{C}$. An excess of water was added dropwise and the solution was stirred for a further $0-5 \mathrm{~h}$. Extraction with ether and recovery gave a mixture which was separated by preparative g.l.c. on a column ( $3 \mathrm{~m} \times 9.5 \mathrm{~mm}$ ) packed with $5 \%$ SE-33 on Gaschrom Q ( $60-80$ mesh) into the following two components: (a) trans-9,10-diethyl-9,10-dihydro-1,4-dimethoxyanthracene ( $\mathbf{2 g}$ ) as an oil (Found: $M^{+}$, 296.177. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $M^{+}, 296.178$ ); $m / z 296\left(M^{+}, 11 \%\right.$ ), 267 (73), 238 (100), and 223 (64); (b) cis-9,10-Diethyl-9,10-dihydroanthracene (1g), as an oil (Found: $M^{+}$, 296.177. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $M, 296.178$ ); $\lambda_{\text {max. }}$.(cyclohexane) $270.5 \mathrm{~nm}\left(\varepsilon 1153 ; m / z 296\left(M^{+}, 21 \%\right), 267\right.$ (73), 238 (100), 223 (73), 184 (48), and 152 (44).

## Acknowledgements

N. A. thanks the Central and Punjab Provisional Government, Pakistan, for a Scholarship and leave of absence. C. C., I. K. H., and N. J. L. thank the S.E.R.C. for postgraduate studentships. We also thank Drs. R. J. Goodfellow and M. Murray for the n.m.r. spectra and helpful discussions.

## References

1 P. W. Rabideau, Acc. Chem. Res., 1978, 11, 141.
2 J.-C. Cocgnacq, M.-P. Simonin, W. Chodkiewicz, and P. Cadiot, C.R. Acad. Sci., 1967, 264, 915.

3 D. Cohen, L. Hewitt, and I. T. Millar, J. Chem. Soc. C, 1969, 2266.
4 C. E. Johnson and F. A. Bovey, J. Chem. Phys., 1958, 29, 1012.
5 W. Chodkiewicz, P. Cadiot, and A. Willemart, C.R. Acad. Sci, 1961, 253, 954; J.-C. Cocgnacq, G. Guillerm, W. Chodkiewitz, and P. Cadiot, Bull. Soc. Chim., 1967, 1190.
6 C. Dufraisse and J. Houpillart, C.R. Acad. Sci., 1937, 205, 740; J. W. Cook and R. H. Martin, J. Chem. Soc., 1940, 1125; G. M. Badger and J. W. Cook, Chem. and Ind., 1949, 68, 353.

7 Y. Lepage, Ann. Chim. (Paris), 1959, 4, 1137; C.R. Acad. Sci., 1959, 248, 1193.
8 A. H. Beckett and R. G. Lingard, J. Chem. Soc., 1961, 588.
9 K. J. Clark, J. Chem. Soc., 1956, 511.
10 A. I. Nogaideli, N. N. Skhirtladze, and N. I. Tabashidze, Soobshch. Akad. Nauk Gruz. SSR, 1966, 42, 595 (Chem. Abstr., 1966, 65, 16918e).
11 D. W. Cameron and W. Meckel, J. Chem. Soc. C, 1968, 1615.
12 P. P. Fu, R. G. Harvey, J. W. Paschal, and P. W. Rabideau, J. Am. Chem. Soc., 1975, 97, 1145.
13 J. MacMillan and E. R. H. Walker, Chem. Commun., 1969, 1032.
14 R. G. Harvey, L. Arzadon, J. Grant, and K. Urberg, J. Am. Chem. Soc., 1969, 91, 4535.
15 R. G. Harvey and C. C. Davis, J. Org. Chem., 1969, 34, 3607.
16 P. W. Rabideau and E. G. Burkholder, J. Org. Chem., 1979, 44, 2354.
17 S. Banks, J. Banks, M. Davey, B. Labrande, and H. Boas-Laurent, J. Org. Chem., 1977, 42, 4058.
18 H. E. Zeigler, D. J. Schaeffer, and R. M. Padronaggio, Tetrahedron Lett., 1969, 5027.

19 D. A. Redford, Ph.D. Thesis, University of Saskatchewan, 1967; Diss. Abstr. B, 1968, 28B, 4074.
20 W. Carruthers and G. E. Hall, J. Chem. Soc. B, 1966, 861.
21 R. Lapouyade, P. Labandibar, and H. Boas-Laurent, Tetrahedron Lett., 1971, 977.
22 P. W. Rabideau and J. W. Paschal, J. Am. Chem. Soc., 1972, 94, 5801.
23 E. D. Becker, 'High Resolution N.M.R. Theory and Chemical Applications,' Academic Press, New York, 1969.

24 D. H. Bowen, C. Cloke, and J. MacMillan, J. Chem. Soc., Perkin Trans. 1, 1975, 1637.
25 G. M. Badger, J. Chem. Soc., 1952, 1175.
26 J. Rigaudy and Khi-Vang-Thang, Bull. Soc. Chem. Fr., 1959, $26,1637$. 27 L. A. Weiles, J. Chem. Soc., 1952, 1358.

